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The incidence of abnormal glucose metabolism in patients with rheumatoid arthritis was considerably higher than the general
population. The persistent systemic inflammatory state in rheumatoid arthritis might be associated with the glucose metabolism
dysfunction. In this context, insulin resistance, islet 3 cell apoptosis, inflammatory cytokines, and other aspects which were linked
with abnormal glucose metabolism in rheumatoid arthritis were reviewed. This review will be helpful in understanding the abnor-
mal glucose metabolism mechanism in patients with rheumatoid arthritis and might be conducive to finding an effective treatment.

1. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune dis-
ease characterized by chronic, symmetry, and destructive
poly-articular synovitis. Although its pathogenesis remains
unclear, it has shown that inflammation induced by abnormal
immune response plays a crucial role in the development
of RA. Recent studies show that RA patients with diabetes
mellitus (DM) prevalence rate was about 15% to 19%, which
was significantly higher than the prevalence rate of 4% to
8% of global middle-aged population DM [1, 2]. In a study,
which consists of 48,718 cases of RA patients and 40,346 cases
of nonrheumatic subjects, the incidence of RA patients with
DM was 0.86% higher than the 0.58% in the control group
which were observed, and DM risk was 1.5-fold in RA patients
when compared with control group [3]. Consistently, a study
described that abnormal glucose metabolism in RA patients
was up to 46% after 2 years when compared with the time
point of recruitment [4]. It is seen that the impaired glucose
metabolism may be accelerated progress in RA patients.
Here, the abnormal glucose metabolism in RA patients was
reviewed.

2. Inflammation and Abnormal
Glucose Metabolism

2.1. Inflammation and Insulin Resistance (IR). Proinflam-
matory cytokines (TNF-«, IL-6, etc.) are closely associated

with IR, and its possible mechanisms include the following:
(1) TNF-« inhibits the cascade effect of insulin signaling
pathway and insulin signaling pathway through stimulating
insulin receptor substrate-1 (IRS-1) phosphorylation of ser-
ine which inhibited tyrosine phosphorylation [5], reduces
adipocyte glucose transport protein-4 (GLUT4) expression,
and inhibits the generation of adiponectin and resistances
the effect of adiponectin promote insulin sensitivity [6]; (2)
TNF-« and IL-6 can accelerate lipolysis and improve the
level of free fatty acids which was an important factor in
participation in the development of IR [7]; (3) IL-1p3 reduces
the expression of IRS-1 leading to impaired insulin signal
transduction through an extracellular signal-regulated kinase
at the transcriptional level but not a posttranscriptional
pathway [8]; (4) As an anti-inflammatory cytokine, low levels
of IL-10 in the human exert an insulin-sensitizing eftect [9].

2.2. Inflammation and [ Cell Dysfunction and Apoptosis.
Studies have demonstrated that the insulin secretion of islet
B cells stimulated by glucose was inhibited when the IL-1f3,
IFN-y, and TNF-a were added in the islet 8 cells culture
system [10]. Furthermore, IL-13 treatment can stimulate
inducible nitric oxide synthase (iNOS) expression resulting in
an increased production of NO and a decreased intracellular
electron transfer mitochondrial ATP synthesis. Intracellular
ATP content could inhibit the secretion of insulin, leading
to 3 cell dysfunction [11]. Besides, the increased Fas/FasL


https://doi.org/10.1155/2017/9670434

expression of f3 cells would lead to cell apoptosis [12]. NF-
xB, the mainly downstream regulator in pancreatic 8 cell
stimulated by inflammatory cytokines, inhibits production of
B cell specific proteins, such as insulin, glucose transporter
2 (GLUT-2), and insulin promoter-1 and promotes iNOS
production [13]. In the meantime, it has been shown that sul-
foraphane exhibits a preventive role in the cytokine-induced
B cell insulin secretory dysfunction and apoptosis through
inhibiting NF-«B activation and iNOS production [14].

Apoptosis mediated by endoplasmic reticulum stress has
been proved to be one of the important mechanisms in
pancreatic f3 cell apoptosis induced by IL-1f3. Combination of
IL-1f3 and IFN-y treatment can significantly reduce the sar-
coplasmic reticulum calcium pump ATP enzyme 2b protein
expression and consumption endoplasmic reticulum Ca**
storage, which also is raised by the BH3-only protein (only
a proapoptotic protein Bcl-2 homology domain, belonging
to Bcl-2 family) through inducing NO synthesis [15]. Islet 3
cells with 4-phenyl butyrate treatment significantly reduced
the cell endoplasmic reticulum stress and cell apoptosis,
which was induced by IL-18 through regulating endoplasmic
reticulum Ca?" concentration and c-Jun-terminal kinase
(JNK) signaling pathway activation [16]. Interestingly, IL-
1 receptor antagonist (IL-Ira) treatment can significantly
improve blood sugar, glycated hemoglobin, proinsulin, and
insulin and pancreatic f cell function in the diabetic mice
induced by high-fat diet. Besides, it also reduced pancre-
atic 3 cells apoptosis, increased proliferation of 3 cells,
and improved glucose-induced insulin secretion in vitro
(17, 18].

The combination of IFN-y and TNF-« treatment pro-
moted the islet f3 cells classic cysteine-dependent apoptosis,
while the administration of TNF-« alone did not increase
islet 8 cells apoptosis. The mechanism might be due to
the expression of NF-«B upregulated by TNF-« stimulation
which exhibited an antiapoptotic effect. However, the NF-xB
activation induced by IFN-y or IL-1§ was considered as a
proapoptotic modulator [19]. Previous studies also demon-
strated that combination of IFN-y and TNF-« treatment
did not increase apoptosis in the signal transducer and
activator of transcription-1 (STATI) transfected-pancreatic f3
cell, which revealed that STATI played an essential role in
inhibiting 3 cell apoptosis resulting from IFN-y and TNF-«
treatment [20].

2.3. Rheumatoid Arthritis, Inflammation, and Insulin Resis-
tance. Inflammatory cytokines, such as TNF-«, IFN-y, IL-
6, and IL-1B3, play a crucial role in the development of RA
[21], and blockage of these cytokines' activity was applied
in clinical therapy [22, 23]. Biologic therapies that target
specific inflammatory cytokines could improve outcomes of
RA patients and reduce disability and mortality. Inhibition of
TNF-« activity agents was firstly confirmed as the biologic
drugs for RA treatment when conventional disease modified
antirheumatic drugs (DMARDs) had no effect on reducing
the disease activity [24]. Until now, lots of blockage of TNEF-
« activity agents were approved in the clinical use, which
were divided into two categories, anti-TNF-a antibody and
soluble TNF-« receptor [25]. Furthermore, other biologics
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were explored and licensed for the clinical use of RA [22], for
instance, IL-6, a representative cytokine featuring pleiotropic
activity and redundancy. However, uncontrolled persistent
production of IL-6 leads to the development of rheumatoid
arthritis (RA). Tocilizumab, a humanized anti-IL-6 receptor
antibody, has proved its efficacy and tolerable safety either as
monotherapy or in combination with DMARD:s [26].

RA leads not only to the destruction of cartilage and
bone but also to system damage including cardiovascular,
pulmonary, and endocrine system [27, 28]. This demon-
strated a relationship between inflammatory factors and
insulin resistance [29-31]. Consistently, there are increased
levels of serum inflammatory markers, IL-6, in patients with
type 2 diabetes, which can induce beta-cell apoptosis [19,
31-33]. Our previous study also showed that the abnormal
glucose metabolism was accompanied by the increased IL-
6 expression [34]. Furthermore, in line with increased IL-6
expression, the apoptosis related enzyme Caspase-3 was also
markedly increased in 3 cell. In addition, TNF-« produced
by adipose tissue macrophage was widely regarded as the
critical pathogenic factor in type 2 diabetes. The prevalence
of RA patients with diabetes is about 15%-19%, which is
significantly higher than the global incidence rate [1, 35]. The
long-term systemic inflammatory status in RA patients might
be the cause of islet 3 cell damage in RA patients.

3. RA and Abnormal Glucose Metabolism

RA patients often showed impaired S cell function and
insulin sensitivity [36]. Dessein and Joffe found that the
higher degree of inflammation (high sensitive CRP >
1.92mg/L) was in negative correlation with the low degree
of inflammation (high sensitive CRP < 1.92 mg/L) in patients
with higher levels of HOMA-IR. However, there was no sig-
nificant difference between HOMA-f3 levels. These data sug-
gested that the degree of inflammation played an important
effect in the progression of IR in RA patients [37]. Besides,
Chung et al. reported that the prevalence of metabolic
syndrome in patients with RA (42% of long-term patients,
patients with early 31%) was significantly higher than the
non-RA group (11%) and also found that CRP and ESR were
significantly positively correlated with the homocysteine
levels in patients with RA [38]. Furthermore, Chung et al.
reported that when adjustment for age, sex, race, BMI, and
current use of glucocorticoids (GC) was performed, the
HOMA-IR levels of patients with RA were also significantly
higher in patients with SLE [39]. Nevertheless, the HOMA-IR
was significantly positively correlated with IL-6 (correlation
coefficient r = 0.63) and TNF-« (r = 0.50) in patients
with RA; the decreased insulin sensitivity might be due to
inflammatory cytokines in RA. A study showed that 72% of
early RA patients were accompanied with insulin resistance,
and the HOMA-IR of RA patient group was significantly
increased compared to the age- and sex-matched control
group [29, 30].

RA patients without diagnosed DM frequently performed
glucose tolerance test, and these results demonstrated an
increased HOMA-IR index, decreased insulin sensitivity, and
reduced dynamic insulin secretion index and disposition
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index in RA patients when compared with general population
[4]. These data suggested that the early insulin secretion
damaged f3 cell after glucose stimulation. On the contrary, it
also demonstrated that the HOMA- 3 levels were higher in RA
patients [40]. The reason is that, in order to maintained nor-
mal fasting blood glucose levels, RA patients secreted more
insulin and induced an increased HOMA- 3 index. Therefore,
the HOMA-f index increase did not mean improvement of
B cell function but merely to compensate for the insulin sen-
sitivity decreases. Similarly, Ferraz-Amaro et al. also detected
insulin, C-peptide, and split and intact proinsulin in the RA
patients and found that, in RA patients, HOMA-IR levels
were significantly higher [36, 37]. Even with the exclusion of
taking GC in RA patients, the results were not changed. Fur-
thermore, in RA patients, the proportion of proinsulin was
significantly higher than the control group; it might be due
to proinsulin process failing to process under the systemic
inflammatory state [41-44]. Taken together, this suggested
that f3 cell function in RA patients had been damaged.

The above studies of RA patients with 3 cell dysfunction
described a clarified relation between the systemic inflamma-
tory state and abnormal glucose metabolism. Recently, stud-
ies had shown that IR and f8 cell function were improved after
the anti-TNF therapy of RA patients, and the prevalence of
DM of RA patients with biologics was significantly decreased
when compared with patients with other antirheumatic drugs
treatment [45-48]. These data supported the relationship
between inflammation and abnormal glucose metabolism.
Additionally, the use of anti-TNF agents therapy in active RA
patients with IR, the fasting blood glucose, insulin levels, and
IR index were improved after the anti-TNF therapy [49-53].
These findings revealed that the TNF-a might be the critical
pathogenic cytokine in the development of IR in RA patients.
By analyzing the serine’'* phosphorylated form (p-Ser®'?) of
IRS-1 and activation with phosphorylation of protein kinase
(AKT) variations before and after anti-TNF therapy in RA
patients, the mechanisms of its improvement in RA patients
with IR might be due to p-Ser’'*IRS-1 levels decreasing and
the proportion of activation with phosphorylation of AKT
increasing after the anti-TNF therapy [45].

4. The Influence of Liver in Abnormal Glucose
Metabolism in RA

In addition to articular cartilage injury, RA also leads to
significant pathogenic changes in other organs such as
lung, vascular tissue, liver, and muscle [54-57]. The liver
is an important organ participating in glucose metabolism,
including the storage, distribution, and regulation of organ-
ismic blood glucose. There are multiple pathways of glucose
metabolism existing in the liver and some of them are unique
to it [58]. RA can lead to a variety of liver lesions and then
result in abnormal glucose metabolism. Several studies have
shown that the reactive oxygen species (ROS) participate in
the generation of RA [59, 60]. High level of ROS in the liver
of adjuvant-induced arthritis in rats seems to be resulting
from both a deficient antioxidant defense and a stimulated
prooxidant system [61, 62]. It has been reported that the
livers of collagen induced arthritis rats exhibited a higher

oxygen consumption, and the efficiency of mitochondrial
energy transduction did not decrease [63]. The activity of
NADPH2-oxidase enzyme and N-demethylase and the levels
of cytochrome P-450 in the liver microsomal of adjuvant
arthritic rats are significantly reduced [64, 65], indicating that
the capability of formation of 3-glucuronide conjugates and
oxidative metabolism of exogenous compounds and steroids
are reduced. A study also demonstrated that the reduced
availability of equivalents in cytosol and the lower catalytic
activities of key enzymes phosphoenolpyruvate inhibited
hepatic gluconeogenesis in arthritic rats [66]. The higher
activities of glucokinase and the lower activities of hepatic
mitochondrial pyruvate dehydrogenase lead to increasing the
uptake of hepatic glucose and the rates of glycolysis in livers
of arthritic rats [67]. The systemic inflammation induced by
adjuvant can cause lysosomes and mitochondria irregularly
shaped and result in hepatic transaminases of the plasma with
higher activities and hepatocellular morphology changes
[68]. In conclusion, RA can lead to liver dysfunction and
affect glucose metabolism which might result in abnormal
glucose metabolism.

5. RA Patients Using GC with Abnormal
Glucose Metabolism

Glucocorticoids (GC) was a common drug in RA treatment,
but its exerts a side effect on the metabolism of RA patients
[69]. In the normal population of the clinical observation
study, it is found that GC treatment reduced liver and periph-
eral insulin sensitivity and destruction of 3 cell function
[70]. Furthermore, a recent study has shown that RA patients
treated with oral GC are an important risk factor for DM; a
25-30% increased risk of DM occurrence was related to each
additional 5mg current oral GCs, while only the GC doses
taken persistently for 6 months are closely associated with the
risk of DM [71]. The administration of GC reduced fasting
insulin sensitivity in the cross-sectional study of RA patients
[4, 72]. Additionally, the use of GC was mainly related to IR
among women, and RA patients without other metabolic risk
factors treated with low dose of GC do not lead to abnormal
glucose metabolism [73]. A randomized and double-blind
study also found that oral glucose tolerance test inspection
after a week of the glucose metabolism did not show changes
from before treatment; this situation might be because the
GC itself causes abnormal glucose metabolism action offset
by improving glucose metabolism in patients through anti-
inflammation and disease action improvement [74]. Mean-
while, a clinical study also showed that a deterioration in
glucose metabolism patients after GC treatment generally
had alonger duration than before treatment; this is consistent
with the aforementioned that extension of inflammatory state
could increase insulin sensitivity and negative effects of f3
cell function [75]. The mechanism might be due to the fact
that GC could further undermine the long course of RA
patients where f3 cell dysfunction was observed. Although
there are so many studies on the glucose metabolism of GC
in RA patients, it still needs long-term clinical trials to study
the long-term use of GC in RA patients induced diabetic
effects.



6. Conclusion

In summary, the systemic inflammation in RA patients played
an important effect in the glucose metabolism, and the long-
term inflammatory status could lead to f3 cell dysfunction and
apoptosis and affect the liver and hepatic glucose metabolism
pathway. Besides, the drug used in the RA treatment, such as
GC, had a certain influence on glucose metabolism. There-
fore, the abnormal glucose metabolism in the development
of RA should be paid attention, and its mechanisms need to
be further explored.
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